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with (E)-Alkene Amide Bond Replacements
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The systematic substitution of amide groups in a
biologically active peptide sequence by isosteric but
nonhydrolyzable functions continues to be an important
design motif in medicinal chemistry.! Hydroxyethylene
(y[CHOHCH,]), methylenethio (y[CH,S]), aminometh-
ylene (y[CH,NH,]), and trans-alkene (y[(E)-CH=CH])
are among the most popular amide bond replacements.*?
In particular, the nonhydrolyzable, rigid (E)-alkene
moiety effectively mimics the three-dimensional structure
of the amide bond, especially the C(a), — C(a)n+1 distance.
We? and others* have recently reported the Sy2'-opening
of alkenylaziridines for the preparation of alkene isos-
teres.> Further progress in this area has been hampered
by a lack of readily removable protective group functions
(PG) for effective aziridine activation and, especially, a
straightforward integration of this methodology with the
standard Fmoc- and resin-based peptide synthesis tech-
niques. In this paper, we report the first preparation of
alkene isosteres on solid support that is immediately
amenable to iterative peptide synthesis.
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We envisioned that attachment of the alkenylaziridine
to a polymeric support through an ester linkage would
lead to a C-terminal-linked dipeptide isostere directly
suitable for further chain elongation. The readily avail-
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able Wang resin® was selected because its usefulness for
peptide synthesis has been well documented,” and more
recently, it has also proved quite versatile for solid-phase
organic chemistry.® The appropriate protection of the
aziridine nitrogen proved critical for the ultimate success
of this methodology. Although both the tosyl and Boc
groups have been shown to be effective protecting/
activating groups in the solution-phase alkenylaziridine
opening,3* neither was deemed appropriate for the cor-
responding solid-phase protocol. The former is often
difficult to remove, and deprotection of the latter is not
compatible with the acid-sensitive Wang linker. How-
ever, Fukuyama and co-workers recently reported the use
of the 2-nitrophenylsulfonyl (Ns—) group as a tosyl analog
that could be readily cleaved with thiophenoxide.® These
mild conditions appeared compatible with the functional-
ity of the (E)-alkene peptide isostere as well as the Wang
resin. Indeed, our work demonstrates that the Ns group
can serve as an effective orthogonal protective group in
solid-phase peptide chemistry (vide infra).

Preparation of the polymer-supported alkenylaziridine
entailed a solid-phase olefination as a key step. Coupling
of the Wang resin with (diethylphosphono)acetic acid
yielded the novel polymeric Horner—Wadsworth—Em-
mons reagent 2 (Scheme 1).1° Reaction with a 3-fold
excess of the aldehyde 3! in the presence of potassium
tert-butoxide provided the polymer-supported alkeny-
laziridine 4. Reaction of 4 with alkylcyanocuprates
occurred readily and cleanly. Swelling of the resin in
THF at room temperature followed by cooling to —78 °C,
addition of a preformed, cold (—78 °C) solution of cuprate,
and quenching after 1 h was established as the most

(6) Wang, S.-S. J. Am. Chem. Soc. 1973, 95, 1328.

(7) (@) Bodanszky, M. Principles of Peptide Synthesis, 2nd ed.;
Springer-Verlag: Heidelberg, 1993. (b) Jung, G.; Beck-Sickinger, A.
G. Angew. Chem., Int. Ed. Engl. 1992, 31, 367. (c) Salomon, C. J.; Mata,
E. G.; Mascaretti, O. A. J. Chem. Soc., Perkin Trans. 1 1996, 995.

(8) Numerous examples of the use of the Wang resin in solid-phase
organic synthesis can be found in several recent reviews: (a) Balken-
hohl, F.; von dem Bussche-Hunnefeld, C.; Lansky, A.; Zechel, C. Angew.
Chem., Int. Ed. Engl. 1996, 35, 2288. (b) Armstrong, R. W.; Combs, A.
P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res. 1996,
29, 123. (c) Thompson, L. A.; Ellman, J. A. Chem. Rev. 1996, 96, 555.
(d) Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Tetrahedron
1996, 52, 4527. (e) Fruchtel, J. S.; Jung, G. Angew. Chem. Int. Ed.
Engl. 1996, 35, 17.

(9) Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995,
36, 6373.

(10) A similar reagent, leading to o,f-unsaturated amides, was
recently reported: Johnson, C. R.; Zhang, B. Tetrahedron Lett. 1995,
36, 9253.

(11) Preparation of 3 is described in the Supporting Information.

© 1997 American Chemical Society



Communications

Scheme 2

NsHNJ\/\E/ CCe

1. KzCOg, PhSH, DMF 1. CSQCO3 PhSH DMF
2. Cbz-Ala-OH, BOP, (Fmoc-Leu),
DIPEA, DMF DIPEA, DMF
3. TFA, CH,Cl, 3. TFA, CH,Cl,
4. TMS-CI, MeOH 4. TMS-CI, MeOH
o)
CszN\__)LN J\/\:/COZMe FmocHN\:/U\ Nj\/ycoznne
ioH iH
7, 62% \( 8, 47%

1. Cs,CO;4, PhSH,
DMF

2. Fmoc-Ala-F,
DIPEA, DMF

AN 50
5¢ \(

)
FmOCHN\)J\ J\/\/COQ
N 3. TFA, CH,Cl,
9 Y 4. TMS-CI, MeOH

Ph

melmu .
10, 59% Y

general reaction protocol for the Sy2' reaction. After
cleavage from the resin and esterification,*? the protected
dipeptide isosteres 6a—e were directly obtained in excel-
lent purity and in good yields (based on the original
loading of 1 on the Wang resin (ca. 0.81 mmol/g)). Copper
reagents derived from organolithium, -magnesium, and
-zinc precursors were equally effective. Since the purity
of the isolated compounds after filtration through a short
plug of SiO, was >90% according to 'H and *C NMR,

1. Piperidine, DMF
2. Fmoc-Phe-F, DIPEA, DMF
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the less than quantitative overall yields for 6a—e are
probably due to some cleavage of the carboxylate 2 from
the resin during the Wadsworth—Emmons reaction.

After the optimization of the solid-phase cuprate
chemistry, incorporation of the polymer-bound dipeptide
isosteres 5 into longer peptide sequences was now readily
achieved as shown in Scheme 2. Cleavage of the nosyl
group according to Fukuyama’s protocol and iterative
coupling of N-protected amino acid residues yielded tri-
and tetrapeptide analogs 7, 8, and 10 in high yields and
in >90% purity after cleavage from the resin. Due to
the high level of reaction optimization in this sequence,
no further chromatographic separation steps were re-
quired.t3

In summary, we have developed the first solid-phase
protocol for the synthesis of peptides containing (E)-
alkene amide isostere linkages.** This efficient method
should prove useful for structure—activity studies of
biologically active peptide sequences in medicinal chem-
istry as well as the combinatorial synthesis of peptido-
mimetics. Novel features of this methodology include the
use of a polymer-bound Horner—Wadsworth—Emmons
reagent for the synthesis of alkenylaziridines and the
Sn2'-reaction of organocopper reagents on solid support.
In addition, the compatibility of the nosyl group with
alkylcyanocuprates and the Wang resin has been dem-
onstrated.
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